Copied to
clipboard

G = C12.4C42order 192 = 26·3

4th non-split extension by C12 of C42 acting via C42/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.4C42, C23.10Dic6, M4(2).2Dic3, C4.4(C4xDic3), C4.50(D6:C4), (C2xC4).129D12, (C2xC12).111D4, (C22xC6).8Q8, C4.Dic3.4C4, C6.6(C8.C4), C3:2(C4.C42), (C22xC4).342D6, (C2xM4(2)).9S3, (C3xM4(2)).4C4, C12.95(C22:C4), (C6xM4(2)).13C2, C22.4(C4:Dic3), C4.29(C6.D4), C2.3(C12.53D4), C6.17(C2.C42), C2.17(C6.C42), C22.22(Dic3:C4), (C22xC12).127C22, (C2xC3:C8).7C4, (C2xC6).9(C4:C4), (C22xC3:C8).2C2, (C2xC12).64(C2xC4), (C2xC4).141(C4xS3), (C2xC4).40(C2xDic3), (C2xC4).270(C3:D4), (C2xC4.Dic3).12C2, SmallGroup(192,117)

Series: Derived Chief Lower central Upper central

C1C12 — C12.4C42
C1C3C6C12C2xC12C22xC12C22xC3:C8 — C12.4C42
C3C6C12 — C12.4C42
C1C2xC4C22xC4C2xM4(2)

Generators and relations for C12.4C42
 G = < a,b,c | a12=1, b4=c4=a6, bab-1=a5, cac-1=a7, cbc-1=a3b >

Subgroups: 168 in 90 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C6, C6, C6, C8, C2xC4, C23, C12, C2xC6, C2xC6, C2xC8, M4(2), M4(2), C22xC4, C3:C8, C24, C2xC12, C22xC6, C22xC8, C2xM4(2), C2xM4(2), C2xC3:C8, C2xC3:C8, C4.Dic3, C4.Dic3, C2xC24, C3xM4(2), C3xM4(2), C22xC12, C4.C42, C22xC3:C8, C2xC4.Dic3, C6xM4(2), C12.4C42
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Q8, Dic3, D6, C42, C22:C4, C4:C4, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2.C42, C8.C4, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4.C42, C12.53D4, C6.C42, C12.4C42

Smallest permutation representation of C12.4C42
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 49 77 61 7 55 83 67)(2 54 78 66 8 60 84 72)(3 59 79 71 9 53 73 65)(4 52 80 64 10 58 74 70)(5 57 81 69 11 51 75 63)(6 50 82 62 12 56 76 68)(13 94 37 35 19 88 43 29)(14 87 38 28 20 93 44 34)(15 92 39 33 21 86 45 27)(16 85 40 26 22 91 46 32)(17 90 41 31 23 96 47 25)(18 95 42 36 24 89 48 30)
(1 32 83 85 7 26 77 91)(2 27 84 92 8 33 78 86)(3 34 73 87 9 28 79 93)(4 29 74 94 10 35 80 88)(5 36 75 89 11 30 81 95)(6 31 76 96 12 25 82 90)(13 61 37 49 19 67 43 55)(14 68 38 56 20 62 44 50)(15 63 39 51 21 69 45 57)(16 70 40 58 22 64 46 52)(17 65 41 53 23 71 47 59)(18 72 42 60 24 66 48 54)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,49,77,61,7,55,83,67)(2,54,78,66,8,60,84,72)(3,59,79,71,9,53,73,65)(4,52,80,64,10,58,74,70)(5,57,81,69,11,51,75,63)(6,50,82,62,12,56,76,68)(13,94,37,35,19,88,43,29)(14,87,38,28,20,93,44,34)(15,92,39,33,21,86,45,27)(16,85,40,26,22,91,46,32)(17,90,41,31,23,96,47,25)(18,95,42,36,24,89,48,30), (1,32,83,85,7,26,77,91)(2,27,84,92,8,33,78,86)(3,34,73,87,9,28,79,93)(4,29,74,94,10,35,80,88)(5,36,75,89,11,30,81,95)(6,31,76,96,12,25,82,90)(13,61,37,49,19,67,43,55)(14,68,38,56,20,62,44,50)(15,63,39,51,21,69,45,57)(16,70,40,58,22,64,46,52)(17,65,41,53,23,71,47,59)(18,72,42,60,24,66,48,54)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,49,77,61,7,55,83,67)(2,54,78,66,8,60,84,72)(3,59,79,71,9,53,73,65)(4,52,80,64,10,58,74,70)(5,57,81,69,11,51,75,63)(6,50,82,62,12,56,76,68)(13,94,37,35,19,88,43,29)(14,87,38,28,20,93,44,34)(15,92,39,33,21,86,45,27)(16,85,40,26,22,91,46,32)(17,90,41,31,23,96,47,25)(18,95,42,36,24,89,48,30), (1,32,83,85,7,26,77,91)(2,27,84,92,8,33,78,86)(3,34,73,87,9,28,79,93)(4,29,74,94,10,35,80,88)(5,36,75,89,11,30,81,95)(6,31,76,96,12,25,82,90)(13,61,37,49,19,67,43,55)(14,68,38,56,20,62,44,50)(15,63,39,51,21,69,45,57)(16,70,40,58,22,64,46,52)(17,65,41,53,23,71,47,59)(18,72,42,60,24,66,48,54) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,49,77,61,7,55,83,67),(2,54,78,66,8,60,84,72),(3,59,79,71,9,53,73,65),(4,52,80,64,10,58,74,70),(5,57,81,69,11,51,75,63),(6,50,82,62,12,56,76,68),(13,94,37,35,19,88,43,29),(14,87,38,28,20,93,44,34),(15,92,39,33,21,86,45,27),(16,85,40,26,22,91,46,32),(17,90,41,31,23,96,47,25),(18,95,42,36,24,89,48,30)], [(1,32,83,85,7,26,77,91),(2,27,84,92,8,33,78,86),(3,34,73,87,9,28,79,93),(4,29,74,94,10,35,80,88),(5,36,75,89,11,30,81,95),(6,31,76,96,12,25,82,90),(13,61,37,49,19,67,43,55),(14,68,38,56,20,62,44,50),(15,63,39,51,21,69,45,57),(16,70,40,58,22,64,46,52),(17,65,41,53,23,71,47,59),(18,72,42,60,24,66,48,54)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B6C6D6E8A8B8C8D8E···8L8M8N8O8P12A12B12C12D12E12F24A···24H
order12222234444446666688888···8888812121212121224···24
size11112221111222224444446···6121212122222444···4

48 irreducible representations

dim111111122222222224
type++++++--++-
imageC1C2C2C2C4C4C4S3D4Q8Dic3D6C4xS3D12C3:D4Dic6C8.C4C12.53D4
kernelC12.4C42C22xC3:C8C2xC4.Dic3C6xM4(2)C2xC3:C8C4.Dic3C3xM4(2)C2xM4(2)C2xC12C22xC6M4(2)C22xC4C2xC4C2xC4C2xC4C23C6C2
# reps111144413121424284

Matrix representation of C12.4C42 in GL4(F73) generated by

0100
727200
00460
00127
,
715300
55200
00100
006751
,
46000
04600
002771
001346
G:=sub<GL(4,GF(73))| [0,72,0,0,1,72,0,0,0,0,46,1,0,0,0,27],[71,55,0,0,53,2,0,0,0,0,10,67,0,0,0,51],[46,0,0,0,0,46,0,0,0,0,27,13,0,0,71,46] >;

C12.4C42 in GAP, Magma, Sage, TeX

C_{12}._4C_4^2
% in TeX

G:=Group("C12.4C4^2");
// GroupNames label

G:=SmallGroup(192,117);
// by ID

G=gap.SmallGroup(192,117);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,365,36,184,570,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^4=c^4=a^6,b*a*b^-1=a^5,c*a*c^-1=a^7,c*b*c^-1=a^3*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<